Filled Benchmark Figure on OpenML-CC18¶
Setup¶
[1]:
import ast
import numpy as np
import pandas as pd
import openml
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
[2]:
# Define color palette
sns.set(
color_codes=True, palette="bright", style="white", context="talk", font_scale=1.5
)
[9]:
def plot_acc(col, ls, pos, n_train):
if pos == 0:
for i, l in enumerate(ls[pos]):
col.plot(n_train, l, label=legends[i], c=colors[i], alpha=0.3)
else:
for i, l in enumerate(ls[pos]):
col.plot(n_train, l, c=colors[i], alpha=0.3)
def plot_fill(col, rf_ls, sdf_ls, label, n_train):
if label:
col.fill_between(
n_train,
rf_ls,
sdf_ls,
where=sdf_ls <= rf_ls,
color=colors[0],
interpolate=True,
alpha=0.3,
label=legends[0],
)
col.fill_between(
n_train,
rf_ls,
sdf_ls,
where=sdf_ls >= rf_ls,
color=colors[1],
interpolate=True,
alpha=0.3,
label=legends[1],
)
else:
col.fill_between(
n_train,
rf_ls,
sdf_ls,
where=sdf_ls <= rf_ls,
color=colors[0],
interpolate=True,
alpha=0.3,
)
col.fill_between(
n_train,
rf_ls,
sdf_ls,
where=sdf_ls >= rf_ls,
color=colors[1],
interpolate=True,
alpha=0.3,
)
return False
def plot_eff(col, ls, pos, n_train):
if pos == 0:
col.scatter(n_train, ls[pos], label=legends[1], c=colors[1], alpha=0.3, s=5)
else:
col.scatter(n_train, ls[pos], c=colors[1], alpha=0.3, s=5)
[4]:
sns.set_theme(style="white", palette="bright", context="talk", font_scale=1.5)
BATCH_SIZE = 100
directory = "../benchmarks/results/"
prefixes = ["rf/", "sdf/"]
legends = [
"RF wins",
"SDF wins",
]
colors = ["b", "r"]
datasets = openml.study.get_suite("OpenML-CC18").data
[5]:
ranges = []
rf_acc_dict = json.load(open(directory + "rf/cc18_acc.json"))
sdf_acc_dict = json.load(open(directory + "sdf/cc18_acc.json"))
avg_rf_acc_ls = []
avg_sdf_acc_ls = []
for dataset in datasets:
ranges.append(len(rf_acc_dict[str(dataset)][0]))
avg_rf_acc_l = np.mean(rf_acc_dict[str(dataset)], axis=0)
avg_rf_acc_ls.append(avg_rf_acc_l)
avg_sdf_acc_l = np.mean(sdf_acc_dict[str(dataset)], axis=0)
avg_sdf_acc_ls.append(avg_sdf_acc_l)
avg_rf_acc_ls = np.array(avg_rf_acc_ls, dtype=object)
avg_sdf_acc_ls = np.array(avg_sdf_acc_ls, dtype=object)
Plot accuracy comparison¶
[26]:
ratio_ls = 100 * (avg_sdf_acc_ls - avg_rf_acc_ls) / avg_rf_acc_ls
eff_filters = []
eff_filter = []
for i in range(len(ratio_ls)):
if np.amax(ratio_ls[i]) >= 1 and np.amin(ratio_ls[i]) <= -1:
eff_filter.append(False)
else:
eff_filter.append(True)
# eff_filters.append(eff_filter)
# eff_filter = []
# for i in range(len(ratio_ls)):
# if np.amax(ratio_ls[i]) <= 1 and np.amin(ratio_ls[i]) >= -1:
# eff_filter.append(False)
# else:
# eff_filter.append(True)
# eff_filters.append(eff_filter)
# eff_filter = []
# for i in range(len(ratio_ls)):
# if np.amin(ratio_ls[i]) > 0:
# eff_filter.append(False)
# else:
# eff_filter.append(True)
# eff_filters.append(eff_filter)
# eff_filter = []
# for i in range(len(ratio_ls)):
# if np.amax(ratio_ls[i]) < 0:
# eff_filter.append(False)
# else:
# eff_filter.append(True)
# eff_filters.append(eff_filter)
[30]:
72 - np.count_nonzero(eff_filter)
[30]:
23
[6]:
acc_ls = []
for prefix in prefixes:
acc_l = []
for dataset in datasets:
f = open(directory + prefix + "cc18_acc.json")
acc = np.mean(json.load(f)[str(dataset)], axis=0)[-1]
f.close()
acc_l.append(acc)
acc_ls.append(acc_l)
acc_ls = np.array(acc_ls)
[51]:
ratio_l = 100 * (acc_ls[1] - acc_ls[0]) / acc_ls[0]
ratio_df = pd.DataFrame(ratio_l, columns=["Effect Size (%)"])
ratio_df["classifier"] = "SDF"
# sns.boxplot(x="classifier", y="Difference Relative to RF", data=ratio_df,color="r")
plt.figure(figsize=(3, 6))
sns.stripplot(
x="classifier",
y="Effect Size (%)",
data=ratio_df,
size=15,
color="r",
jitter=0,
alpha=0.1,
)
[51]:
<AxesSubplot:xlabel='classifier', ylabel='Effect Size (%)'>

[29]:
fig, ax = plt.subplots(figsize=(8, 8), constrained_layout=True)
fig.text(0.53, -0.05, "Number of Train Samples", ha="center")
fig.text(-0.05, 0.5, "Accuracy", va="center", rotation="vertical")
ytitles = ["Accuracy", "Wall Time (s)"]
ylimits = [[-0.05, 1.05], [1e-4, 1e5]]
yticks = [[0, 1], [1e-4, 1e-1, 1e2, 1e5]]
label = True
for i in range(len(datasets)):
n_train = range(100, (ranges[i] + 1) * 100, 100)
if not eff_filter[i]:
# Label x axis and plot figures
label = plot_fill(ax, avg_rf_acc_ls[i], avg_sdf_acc_ls[i], label, n_train)
# Adjust x axis
ax.set_xscale("log")
# ax.tick_params(
# axis="x", which="both", bottom=False, top=False, labelbottom=False
# )
# Adjust y axis
ax.set_ylim(ylimits[0])
ax.set_yticks(yticks[0])
# Adjust overall
# ax.set_title(datasets[count])
leg = fig.legend(
bbox_to_anchor=(0.53, -0.17),
bbox_transform=plt.gcf().transFigure,
ncol=3,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/cc18_fill.pdf", transparent=True, bbox_inches="tight")

[25]:
fig, ax = plt.subplots(
nrows=2,
ncols=2,
figsize=(12, 12),
constrained_layout=True,
sharex=True,
)
fig.text(0.53, -0.05, "Number of Train Samples", ha="center")
fig.text(-0.05, 0.5, "Accuracy", va="center", rotation="vertical")
titles = [
"Significant Shifts",
"Similar Performance",
"Positive Effect Sizes",
"Negative Effect Sizes",
]
ylimits = [[-0.05, 1.05], [1e-4, 1e5]]
yticks = [[0, 1], [1e-4, 1e-1, 1e2, 1e5]]
count = 0
label = True
for row in ax:
for col in row:
for i in range(len(datasets)):
n_train = range(100, (ranges[i] + 1) * 100, 100)
if not eff_filters[count][i]:
# Label x axis and plot figures
label = plot_fill(
col, avg_rf_acc_ls[i], avg_sdf_acc_ls[i], label, n_train
)
# Adjust x axis
col.set_xscale("log")
# ax.tick_params(
# axis="x", which="both", bottom=False, top=False, labelbottom=False
# )
if count < 2:
col.set_xticks([])
# Adjust y axis
col.set_ylim(ylimits[0])
if count == 1 or count == 3:
col.set_yticks([])
else:
col.set_yticks(yticks[0])
col.set_title(titles[count])
count += 1
# Adjust overall
# ax.set_title(datasets[count])
leg = fig.legend(
bbox_to_anchor=(0.53, -0.17),
bbox_transform=plt.gcf().transFigure,
ncol=3,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/cc18_fill.pdf", transparent=True, bbox_inches="tight")

Plot all accuracy¶
[88]:
fig, ax = plt.subplots(figsize=(8, 8), constrained_layout=True)
fig.text(0.53, -0.05, "Number of Train Samples", ha="center")
fig.text(-0.01, 0.5, "Accuracy", va="center", rotation="vertical")
ytitles = ["Accuracy", "Wall Time (s)"]
ylimits = [[-0.05, 1.05], [1e-4, 1e5]]
yticks = [[0, 1], [1e-4, 1e-1, 1e2, 1e5]]
for i in range(len(datasets)):
n_train = range(100, (ranges[i] + 1) * 100, 100)
if not eff_filter[i]:
# Label x axis and plot figures
plot_fill(ax, avg_rf_acc_ls[i], avg_sdf_acc_ls[i], i, n_train)
# Adjust x axis
ax.set_xscale("log")
# ax.tick_params(
# axis="x", which="both", bottom=False, top=False, labelbottom=False
# )
# Adjust y axis
ax.set_ylim(ylimits[0])
ax.set_yticks(yticks[0])
# Adjust overall
# ax.set_title(datasets[count])
leg = fig.legend(
bbox_to_anchor=(0.53, -0.17),
bbox_transform=plt.gcf().transFigure,
ncol=3,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/cc18_fill.pdf", transparent=True, bbox_inches="tight")

[9]:
# Show concatenated time for batch estimators
concat = True
acc_ls = []
time_ls = []
ranges = []
for dataset in datasets:
acc_l = []
time_l = []
for prefix in prefixes:
f = open(directory + prefix + "cc18_acc.json")
acc = np.mean(json.load(f)[str(dataset)], axis=0)
f.close()
acc_l.append(acc)
f = open(directory + prefix + "cc18_train_t.json")
time = np.mean(json.load(f)[str(dataset)], axis=0)
f.close()
if concat and prefix == "rf/":
for j in range(1, len(time)):
time[j] += time[j - 1]
time_l.append(time)
acc_ls.append(acc_l)
time_ls.append(time_l)
ranges.append(len(acc_l[0]))
[28]:
fig, ax = plt.subplots(figsize=(8, 8), constrained_layout=True)
fig.text(0.53, -0.01, "Number of Train Samples", ha="center")
fig.text(-0.01, 0.5, "Accuracy", va="center", rotation="vertical")
ytitles = ["Accuracy", "Wall Time (s)"]
ylimits = [[-0.05, 1.05], [1e-4, 1e5]]
yticks = [[0, 1], [1e-4, 1e-1, 1e2, 1e5]]
for i in range(len(datasets)):
n_train = range(100, (ranges[i] + 1) * 100, 100)
# Label x axis and plot figures
plot_acc(ax, acc_ls, i, n_train)
# Adjust x axis
ax.set_xscale("log")
ax.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=False)
# Adjust y axis
ax.set_ylim(ylimits[0])
ax.set_yticks(yticks[0])
# Adjust overall
# ax.set_title(datasets[count])
leg = fig.legend(
bbox_to_anchor=(0.53, -0.12),
bbox_transform=plt.gcf().transFigure,
ncol=3,
loc="lower center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.savefig("../paper/cc18.pdf", transparent=True, bbox_inches="tight")

[36]:
batch_counts = []
eff_size_ls = []
rf_acc_dict = json.load(open(directory + "rf/cc18_acc.json"))
sdf_acc_dict = json.load(open(directory + "sdf/cc18_acc.json"))
avg_rf_acc_ls = []
avg_sdf_acc_ls = []
for dataset in datasets:
batch_count = len(rf_acc_dict[str(dataset)][0])
batch_counts.append(batch_count)
avg_rf_acc_l = np.mean(rf_acc_dict[str(dataset)], axis=0)
avg_rf_acc_ls.append(avg_rf_acc_l)
avg_sdf_acc_l = np.mean(sdf_acc_dict[str(dataset)], axis=0)
avg_sdf_acc_ls.append(avg_sdf_acc_l)
for i in range(len(batch_counts)):
eff_size_l = []
for j in range(batch_counts[i]):
rf_acc = avg_rf_acc_ls[i][j]
sdf_acc = avg_sdf_acc_ls[i][j]
eff_size_l.append(100 * (sdf_acc - rf_acc) / rf_acc)
eff_size_ls.append(eff_size_l)
[53]:
fig, ax = plt.subplots(figsize=(8, 8), constrained_layout=True)
fig.text(0.53, -0.05, "Number of Train Samples", ha="center")
fig.text(-0.05, 0.5, "Effect Size (%)", va="center", rotation="vertical")
ytitles = ["Accuracy", "Wall Time (s)"]
ylimits = [[-0.05, 1.05], [1e-4, 1e5]]
yticks = [[0, 1], [1e-4, 1e-1, 1e2, 1e5]]
for i in range(len(datasets)):
n_train = range(100, (ranges[i] + 1) * 100, 100)
# Label x axis and plot figures
plot_eff(ax, eff_size_ls, i, n_train)
# Adjust x axis
# ax.set_xscale("log")
# ax.tick_params(
# axis="x", which="both", bottom=False, top=False, labelbottom=False
# )
# Adjust y axis
# ax.set_ylim(ylimits[0])
# ax.set_yticks(yticks[0])
# Adjust overall
# ax.set_title(datasets[count])
# leg = fig.legend(
# bbox_to_anchor=(0.53, -0.16),
# bbox_transform=plt.gcf().transFigure,
# ncol=3,
# loc="lower center",
# )
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
